LTHS UOS 1.1 White Paper

 Layered Ternary Harmony Story 1.1 Universal Operating System (LTHS UOS 1.1)


 

What is it?

 

LTHS UOS 1.1 is a new, universal Story Consciousness  Programming Technology, founded and engineered by Chef Pru of Harmonic Paradise Studios of Paradise Story, using internet-enabled, meta-observations to cast a new Story of our observable Universe and Selves using Story, Art, Language, Music, Computing Architectures, Languages and  Dynamics to upgrade our Self and Universal Consciousness Programming, delivering a new age of Human Paradise Story Consciousness, a global Paradise Story Consciousness Renaissance.

 

 

How does it work?

       LTHS UOS 1.1 guides our reasoning to observe the Universe both ,begins with, and is composed of Hydrogen, Helium, Hydrogen:Helium Stars and their Periodic Star Element and Molecular Expressions, including life-giving, expanding consciousness-producing Light, Heat, Water, Hydrogen-Semiconducting Carbon Molecules, including Methyl-Headed Proteins, Fats, and Chromosomes.

    LTHS UOS 1.1  guides our reasoning to observe the Story                                   of our Universe is composed of observable Layers, including Layered Stories, including the Story of Infinite Possibilities, which is the Foundation of All Things, Story Seasons, Renaissance Story , a Consciousness and Expanding Progress by Elimination of Negativity by Expanding Consciousness Discovery Story and Paradise Story, an Ever Expanding Harmony, Freedom, Progress, Consciousness and Inspiration Story of our Universe, Story Consciousness which represents the Awareness or Mind of these Layers, Stories and Layered Stories, and Story States, where Stories are the Universal Software Layer, Story Consciousness the Universal CPU Layer,  and Story States the Universal Physical Layer which includes our Physical Cosmos, Galaxies, Star Systems, Planets, Water, and DNA-Based Life, including our Human Earth Bodies and Supporting Living Earth and Solar System and which can be expressed as a Turing Universal Machine.

    

 Sfqu = o± [story:mind:state]

Story Frequency Units (Sfqu) represent the frequency, story, story consciousness programming, state unit and potential Story Energy       all in one, allowing for universal layered story planning, measurement, prediction and engineering. 

    

BEEKEEPER EXAMPLE:

Beekeeper Example

 

Illustrating using the following example of a 100KG Stone Age Conscious Human, unaware of beekeeping, versus same human, upgrading consciousness by learning beekeeping, then by learning science and smartphone technology, then by learning the new LTHS UOS 1.1 Technology, each new layer showing the impressive increases to LTHS 1.1 POTENTIAL STORY ENERGY.

 

 

Using a Stone Age, 100KG human as an example: 

 

(Stone Age Human Foraging For and Collecting Honey for Food, Beekeeping Unaware)

 

    Sfqu=o± [LTHS1.1:Human:100Kg] = +/- 100 

 

(Stone Age Human Beekeeping to Produce Honey for Food)

 

    Sfqu=o± [LTHS1.1:Human:100Kg] = +/- 100 


 

(Smartphone Using Christian, Scientific Human Beekeeping to Produce a Global, Mobile Smart Economy for Food)


 

    Sfqu=o± [LTHS1.1:Human:100Kg] = +/- 100 

 

(Smartphone Using LTHS 1.1 Human Beekeeping to Produce a Global, LTHS 1.1-Based Economy for Food)

 

 

 

    Sfqu=o± [LTHS1.1:Human:100Kg] = + 100 

Note elimination of negative state gained by discovery and correction.

 

Using LTHS UOS 1.1 we observe explosive increases in Potential Story Energy, from a worst case Potential Story Energy of -100, which represents our current, Smartphone-Aware, Separation-Based, Scientific Human, to a Potential Story Energy of 100 for the LTHS 1.1-Aware Human, representing the consciousness of this paper, and representing an explosive expansion in Potential Story Energy, and representing a potential new Story Motor which can harness new, unlimited free, green Story Energy simply by increases to the Self and Universal Consciousness of the same human, in a way similar to the potential energy of a human with the will and ability to launch a nuclear war, to that same human turned into a champion for peace.

 

    LTHS UOS 1.1 delivers endless, immediate possibilities across all layers of our daily life including health, medicine, psychology, neuroscience, computing, business, entertainment, lifestyle, education, governance, quantum physics, chemistry, biology, genetics, limited only by our imaginations, interests and efforts.

References

1.    Turing, T. A. On Computable Problems with an Application to the Entscheidungsproblem. Proc. Lond. Math. Soc.  2, 42 (1936).

2.    Gambini, R., Lewowicz, L. & Pullin, J. Quantum Mechanics, Strong Emergence and Ontological Non-Reducibility. Foundations of Chemistry 17, 117–127 (2015).

3.    Gao, S. The measurement problem revisited. Synthese 196, 299–311 (2019).

4.    Igamberdiev, A. U. Time and Life in the Relational Universe: Prolegomena to an Integral Paradigm of Natural Philosophy. Philosophies 3, 30 (2018).

5.    Wheeler, W. M. The ant-colony as an organism. J. Morphol. 22, 307–325 (1911).

6.    Winston, J. E. Life in the colonies: learning the alien ways of colonial organisms. Integr. Comp. Biol. 50, 919–933 (2010).

7.    Canciani, M., Arnellos, A. & Moreno, A. Revising the Superorganism: An Organizational Approach to Complex Eusociality. Front. Psychol. 10, 2653 (2019).

8.    Bar-Yam, Y. Multiscale variety in complex systems. Complexity 9, 37–45 (2004).

9.    Gershenson, C. The Implications of Interactions for Science and Philosophy. arXiv [nlin.AO] (2011).

10.    Morales, A. J., Gershenson, C., Braha, D. & Minai, A. A. Unifying Themes in Complex Systems IX. (2018).

11.  Lerminiaux, N. A., Cameron, A. D. S. Horizontal Transfer of Antibiotic Resistance Genes in Clinical Environments. Canadian Journal of Microbiology 65(1), 34-44 (2019).

12.     Reebs, S. G. Can a Minority of Informed Leaders Determine the Foraging Movements of a Fish Shoal? Animal Behaviour 59, 403-409 (2000). 

13. Bangham, J., Obbard D. J., Kim, K. W., Haddrill, P. R., Jiggins, F. M. The Age and Evolution of an Antiviral Resistance Mutation in Drosophila Melanogaster. Proceeding of the Royal Society B 274(1621), 2027‐2034 (2007).

14.    Reynolds, C. W. Flocks, Herds and Schools: A Distributed Behavioral Model. Computer Graphics 21(4), (1987).

15.    Irwin, K.; Amaral, M.; Chester, D. The Self-Simulation Hypothesis Interpretation of Quantum Mechanics. Entropy 2020, 22, 247 (2020).

16.    Ran, T., Kaplan, S. & Shapiro, E. Molecular implementation of Simple Logic Programs. Nature Nanotech 4, 642–648 (2009). 

17.    Wang, Y., Noor-A-Rahim, M., Zhang, J. et al. High Capacity DNA Data Storage with Variable-Length Oligonucleotides Using Repeat Accumulate Code and Hybrid Mapping. J Biol Eng 13, 89 (2019).

18.     Arima, A.; Iachello, F. . Collective Nuclear States as Representations of a SU(6) Group. Physical Review Letters. American Physical Society (APS). 35 (16): 1069–1072 (1975). 

19.    Murphy WJ, Frönicke L, O'Brien SJ, Stanyon R. The Origin of Human Chromosome 1 and its Homologs in Placental Mammals. Genome Res. 13(8):1880‐1888 (2003).

20.     Trewavas A. "Green Plants as Intelligent Organisms". Trends in Plant Science. 10 (9): 413–9 (2005).

21.    Michmizos D., Chilioti Z. "A Roadmap Towards a Functional Paradigm for Learning & Memory in Plants". Journal of Plant Physiology. 232 (1): 209–215 (2019).

22.    Zahavi, D. Subjectivity and selfhood: Investigating the first-person perspective. New York: MIT (2005).

23.  Aglietta M., Reberioux A., Babiak P. Psychopathic Manipulation in Organizations: Pawns, Patrons and Patsies", International Perspectives and Psychopathy, British Psychological Society, Leicester, pp. 12–17. (1996).

24.    Gubrium, J. F., Holstein, J. A. Analyzing Narrative Reality. Thousand Oaks, CA: Sage (2009). 

25.    Hauser, M. D.; Chomsky, N.; Fitch, W. T. The Faculty of Language: What Is It, Who Has It, and How Did It Evolve?   American Association for the Advancement of Science. pp. 1569–1579 (2002).

26.    Herzing, D. L. Delfour, F., Pack, A. A. Responses of Human-Habituated Wild Atlantic Spotted Dolphins to Play Behaviours Using a Two-Way Human/Dolphin Interface. International Journal of Comparative Psychology. 25, 137–165 (2012).

27.    Knight, C., Studdert-Kennedy, M., Hurford, J.R. The Evolutionary Emergence of Language: Social Function and the Origins of Linguistic Form. Cambridge: Cambridge University Press (2000).

28.    Rennie, J. "The Beautiful Intelligence of Bacteria and Other Microbes". Quanta Magazine.

29.     Ford, B. J. Are Cells Ingenious? Microscope. 52 (3/4), 135–144 (2004). 

30.    Cohen, Inon; et al. Continuous and Discrete Models of Cooperation in Complex Bacterial colonies. Fractals. 7.03 (3), 235–247 (1999).

31.    Friston, K. The Free-Energy Principle: A Unified Brain Theory?. Nat Rev Neurosci 11, 127–138 (2010).

32.    Winograd, T. Understanding Natural Language. Cognitive Psychology. 3 (1), 1–191 (1972).

33.    TURING, A. M. I. COMPUTING MACHINERY AND INTELLIGENCE, Mind, Volume LIX( 236), 433–460  (1950).

34.    Hintikka, J. Philosophy of Logic. Encyclopædia Britannica, Inc. 

35.    James, M.,  Ramstead, D., Badcock, P. B., Friston, K. J. Answering Schrödinger's Question: A Free-Energy Formulation. Physics of Life Reviews. 24, 1-16 (2018).

 

36.    Leung, K. S., Shi, H. F., Cheung, W. H., Qin, L., Ng, W. K., Tam, K. F., Tang, N. "Low-Magnitude High-Frequency Vibration Accelerates Callus Formation, Mineralization, and Fracture Healing in Rats". J Orthop Res. 27 (4): 458–65 (2009). 

37.    Orr, H. The Genetic Theory of Adaptation: A Brief History. Nat Rev Genet 6, 119–127 (2005). 

38.    WATSON, J., CRICK, F. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 171, 737–738 (1953). 

39.    Bossdorf, O., Arcuri, D., Richards, C.L. et al. Experimental Alteration of DNA Methylation Affects the Phenotypic Plasticity of Ecologically Relevant Traits in Arabidopsis thaliana. Evol Ecol 24, 541–553 (2010).

40.     Butlin R.K., Tregenza T. Levels of Genetic Polymorphism: Marker Loci Versus Quantitative Traits [published correction appears in Philos Trans R Soc Lond B Biol Sci 355(1404), (2000)]. Philos Trans R Soc Lond B Biol Sci. 353(1366), 187‐198 (1998). 

41.    Dobzhansky, T. Genetics of Natural Populations. XXV. Genetic Changes in Populations of Drosophila pseudoobscura and Drosophila persimilis in Some Localities in California, Evolution. 10 (1), 82–92 (1956).

42.     Copley, S. D. Evolution of a Metabolic Pathway for Degradation of a Toxic Xenobiotic: The Patchwork Approach". Trends in Biochemical Sciences. 25(6), 261–265  ( 2000).

43.      Ören, T.I. Advances in Computer and Information Sciences: From Abacus to Holonic Agents. Turkish Journal of Electrical Engineering and Computer Sciences , 9:1, 63-70 (2001).

44.    Burkholder, P. R.Cooperation and Conflict among Primitive Organisms. American Scientist, 40, 601-631  (1952) 

45.    Pringle, E. G. Orienting the Interaction Compass: Resource Availability as a Major Driver of Context Dependence. PLOS Biology. 14(10) (2016).

 

46.    Hatcher, B. G. Coral Reef Primary Productivity. A Hierarchy of Pattern and Process. Trends in Ecology and Evolution. 5 (5): 149–155 (1990).

47.    Simberloff, D., Martin, J. L., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., Courchamp, F.,  Galil, B., García-Berthou, E.  Impacts of Biological Invasions: What's What and the Way Forward. Trends in Ecology & Evolution. 28 (1): 58–66 (2013).

48.    Clemons, E. K. How Information Changes Consumer Behavior and How Consumer Behavior Determines Corporate Strategy. Journal of Management Information Systems. 25 (2): 13–40 (2008). 

49.    Furuichi, T. Female Contributions to the Peaceful Nature of Bonobo Society. Evolutionary Anthropology: Issues, News, and Reviews. 20 (4): 131–42 (2011). 

50.     Pennestrı̀, E.; Cavacece, M.; Vita, L. On the Computation of Degrees-of-Freedom: A Didactic Perspective. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. California, USA  (2005).

51.    Iorio, L. Perturbed Stellar Motions Around the Rotating Black Hole in Sgr A* for a Generic Orientation of its Spin Axis". Physical Review D. 84 (12): 124001 (2011).

52.    Tukey, J. W. The Teaching of Concrete Mathematics. American Mathematical Monthly. Mathematical Association of America. 65 (1): 1–9, 2 (1958).

53.    Maxwell, J. CA Dynamical Theory of the Electromagnetic Field. Philosophical Transactions of the Royal Society of London. 155: 459–512 (1865).

54.    Schmidt-Rohr, K. Oxygen Is the High-Energy Molecule Powering Complex Multicellular Life: Fundamental Corrections to Traditional Bioenergetics. ACS Omega 5: 2221-2233 (2020).

55. Martyushev, L. M., Seleznev, V. D. Maximum Entropy Production Principle in Physics, Chemistry and Biology". Physics Reports. 426 (1): 1–45 (2006).

56.    Kane, G. The Mysteries of Mass. Scientific American. pp. 32–39 (September 2008). 

57.    Hecht, E. There Is No Really Good Definition of Mass. Phys. Teach. 44 (1): 40–45 (2006).

58.    Laursen, S., Chang, J., Medlin, W., Gürmen, N., Fogler, H. S. An Extremely Brief Introduction to Computational Quantum Chemistry. Molecular Modeling in Chemical Engineering. University of Michigan (July 2004).

59.    Tikhonov, V. I., Volkov, A. A. Separation of Water into Its Ortho and Para Isomers. Science. 296 (5577): 2363 (2002).

60.    Shinitzky, M., Elitzur, A. C. Ortho-Para Spin Isomers of the Protons in the Methylene Group". Chirality. 18 (9): 754–756 (2006).

61.    Korsheninnikov, A., Nikolskii, E., Kuzmin, E., Ozawa, A., Morimoto, K., Tokanai, F., Kanungo, R., Tanihata, I. Experimental Evidence for the Existence of H and for a Specific Structure of He. Physical Review Letters. 90 (8): 082501 (2003).

62.    National Electrical Manufacturers Association. A chronological history of electrical development from 600 B.C. National Electrical Manufacturers Association. p. 102. (1946).

63.    Sandrock, G. Metal-Hydrogen Systems. Sandia National Laboratories. (May 2002). 

64.    Eddington, A. S. The Internal Constitution of the Stars. The Scientific Monthly, 11 (4): 297–303 (1920).

65.    Hetherington, N. S.. McCray, W. P.,  Weart, S. R., Spectroscopy and the Birth of Astrophysics, American Institute of Physics, Center for the History of Physics (2015).

66.    Burns, T. Aspects of the Development of Colorimetric Analysis and Quantitative Molecular Spectroscopy in the Ultraviolet-Visible Region. In Burgess, C.; Mielenz, K. D. (eds.). Advances in Standards and Methodology in Spectrophotometry. Burlington: Elsevier Science. p. 1 (1987).

67.    Swings, P., Rosenfeld, L. Considerations Regarding Interstellar Molecules. Astrophysical Journal 86: 483–486 (1937).

68.    S. Weinreb, A. H. Barrett, M. L. Meeks & J. C. Henry "Radio Observations of OH in the Interstellar Medium". Nature. 200 (4909): 829–831 (1963).

69.    Trixler, F  "Quantum tunnelling to the origin and evolution of life". Current Organic Chemistry. 17 (16): 1758–1770 (2013). 

70.     Dolomatov, Michel Y. "Thermodynamic models of the distribution of life-related organic molecules in the interstellar medium". Astrophysics and Space Science. 351 (1): 213–218 ( 2014).

71.    Woosley, S. E.; Heger, A.; Weaver, T. A. "The evolution and explosion of massive stars". Reviews of Modern Physics. 74 (4): 1015–1071  (2002). 

72.    Fryer, C. L. "Black-hole formation from stellar collapse". Classical and Quantum Gravity. 20 (10): S73–S80 (2003). .

73.    Hoyle, F. "On Nuclear Reactions Occurring in Very Hot STARS. I. The Synthesis of Elements from Carbon to Nickel". The Astrophysical Journal Supplement Series. 1: 121 (1954).

74.    Suess, H. E.; Urey, H. C. "Abundances of the Elements". Reviews of Modern Physics. 28 (1): 53–74 (1956). 

75.    Eddington, A. S. "The internal constitution of the stars". The Observatory. 43 (1341): 341–358 (1920).

76.    Jeffrey, C. Simon, G., A.; Reddy, B. E. (eds.), "Principles and Perspectives in Cosmochemistry", Astrophysics and Space Science Proceedings, Springer, 16: 64–66 (2010).

77.    Braun, Charles L.; Sergei N. Smirnov "Why is water blue?". J. Chem. Educ. 70 (8): 612 (1993).

78.    Wu L, Candille SI, Choi Y, Xie D, Jiang L, Li-Pook-Than J, Tang H, Snyder M "Variation and genetic control of protein abundance in humans". Nature. 499 (7456): 79–82 (July 2013). 

79.    Fernández A., Scott R.  "Dehydron: a structurally encoded signal for protein interaction". Biophysical Journal. 85 (3): 1914–28 (September 2003).

80.    Sankaranarayanan R., Moras D.  "The fidelity of the translation of the genetic code". Acta Biochimica Polonica. 48 (2): 323–35  (2001).

81.    Brosnan J. T.  "Interorgan amino acid transport and its regulation". The Journal of Nutrition. 133 (6 Suppl 1): 2068S–72S (June 2003).

82.    Herges T., Wenzel W. "In silico folding of a three helix protein and characterization of its free-energy landscape in an all-atom force field". Physical Review Letters. 94 (1): 018101 (January 2005).

83.    Zagrovic, B., Snow, C. D., Shirts, M. R., Pande, V. S.  "Simulation of folding of a small alpha-helical protein in atomistic detail using worldwide-distributed computing". Journal of Molecular Biology. 323 (5): 927–37  (November 2002).

84.     Scheraga HA, Khalili M, Liwo A  "Protein-folding dynamics: overview of molecular simulation techniques". Annual Review of Physical Chemistry. 58: 57–83  (2007). 

85.    Ritchie, D. W.  "Recent progress and future directions in protein-protein docking". Current Protein & Peptide Science. 9 (1): 1–15 (February 2008). 

86.    Walian, P., Cross, T. A., Jap, B. K. "Structural genomics of membrane proteins". Genome Biology. 5 (4): 215 (2004). 

87.    Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T "Lipid-protein interactions in double-layered two-dimensional AQP0 crystals". Nature. 438 (7068): 633–38 (December 2005).

88.    Zhang C., Kim S.H. "Overview of structural genomics: from structure to function". Current Opinion in Chemical Biology. 7 (1): 28–32 (February 2003). 

89.    Smith, S. "The Animal Fatty Acid Synthase: One Gene, One Polypeptide, Seven Enzymes". The FASEB Journal. 8 (15): 1248–1259 (1994).

90.    Muneer S, Kim EJ, Park JS, Lee JH "Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.)". International Journal of Molecular Sciences. 15 (3): 4657–70 (March 2014). 

91.    Woodward RB, Ayer WA, Beaton JM, Bickelhaupt F, Bonnett R, Buchschacher P, et al. "The total synthesis of chlorophyll" (PDF). Journal of the American Chemical Society. 82 (14): 3800–3802 (July 1960).

92.    Battersby, A. R. "Tetrapyrroles: the Pigments of Life. A Millennium review". Nat. Prod. Rep. 17 (6): 507–526 (2000).

93.    Eckhardt, Ulrich; Grimm, Bernhard; Hortensteiner, Stefan "Recent advances in chlorophyll biosynthesis and breakdown in higher plants". Plant Molecular Biology. 56 (1): 1–14 (2004).

94.     Zolla, Lello; Rinalducci, Sara"Involvement of Active Oxygen Species in Degradation of Light-Harvesting Proteins under Light Stresses†". Biochemistry. 41(48): 14391–14402  (2002). 

95.    Ellison, G. B., Engelking, P. C., Lineberger, W. C. "An experimental determination of the geometry and electron affinity of methyl radical CH3" Journal of the American Chemical Society, volume 100, issue 8, pages 2556–2558  (1978).

96.    Thauer, R. K., "Biochemistry of Methanogenesis: a Tribute to Marjory Stephenson", Microbiology, volume 144, pages 2377–2406 (1998).

97.    Heinz G. Floss, Sungsook Lee "Chiral methyl groups: small is beautiful" Acc. Chem. Res., volume 26, pp 116–122 (1993).

98.     Cavuoto P, Fenech MF "A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension". Cancer Treatment Reviews. 38 (6): 726–36 (2012).

99.     Ferla MP, Patrick WM "Bacterial methionine biosynthesis". Microbiology. 160 (Pt 8): 1571–84 (2014).

100.    Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. "Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance". Aging Cell. 4 (3): 119–25 (June 2005).

101.    Albrecht Kossel and Albert Neumann (1893) "Ueber das Thymin, ein Spaltungsproduct der Nucleïnsäure" (On thymine, a cleavage product of nucleic acid), Berichte der Deutschen Chemischen Gesellschaft zu Berlin, 26 : 2753-2756. 

102.    Ben K. D. Pearce and Ralph E. Pudritz. Meteorites and the RNA World: A Thermodynamic Model of Nucleobase Synthesis within Planetesimals. Astrobiology. 16 (11): 853-872, (Nov 2016).

103.    GLAVIN, D.P., AUBREY, A.D., CALLAHAN, M.P., DWORKIN, J.P., ELSILA, J.E., PARKER, E.T., BADA, J.L., JENNISKENS, P. and SHADDAD, M.H. Extraterrestrial amino acids in the Almahata Sitta meteorite. Meteoritics & Planetary Science, 45: 1695-1709  (2010).

104.    Bose, M., Root, R.A. and Pizzarello, S. A XANES and Raman investigation of sulfur speciation and structural order in Murchison and Allende meteorites. Meteorit Planet Sci, 52: 546-559 (2017).

105.    Hoover, Richard. Fossils of Cyanobacteria in CI1 Carbonaceous Meteorites: Implications to Life on Comets, Europa, and Enceladus. Journal of Cosmology. 13 (2011).

106.    Lee, J., Pillardy, J., Czaplewski, C., Arnautova, Y., Ripoll, D. R., Liwo, A., Gibson, K. D., Wawak, R. J., Scheraga, H. A. “Efficient parallel algorithms in global optimization of potential energy functions for peptides, proteins, and crystals”. Computer Physics Communications 128, 399–411 (2000).

107.    Karthikeyan, B. and Sztandera, L.M. "Analysis of tactile perceptions of textile materials using artificial intelligence techniques: Part 1: forward engineering", International Journal of Clothing Science and Technology, Vol. 22 No. 2/3, pp. 187-201 (2010).

108.    VanRullen, R. “Perception Science in the Age of Deep Neural Networks.” Frontiers in Psychology, 8, page 142 (2017).

109.    Crowley J.L. (1996) Mathematical foundations of navigation and perception for an autonomous mobile robot. In: Dorst L., van Lambalgen M., Voorbraak F. (eds) Reasoning with Uncertainty in Robotics. RUR 1995. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence), vol 1093. Springer, Berlin, Heidelberg.

110.    Chemero, A. “Radical Embodied Cognitive Science”. Review of General Psychology, 17, 2: pp. 145-150. , First Published June 1, 2013.

111.    Darden, L. “Artificial Intelligence and Philosophy of Science: Reasoning by Analogy in Theory Construction.” PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1982:2, 147-165 (1982).

112.    Darden L. Discovering Mechanisms: A Computational Philosophy of Science Perspective. In: Jantke K.P., Shinohara A. (eds) Discovery Science. DS 2001. Lecture Notes in Computer Science, vol 2226. Springer, Berlin, Heidelberg (2001).

113.    Chen,C., Chen, Y., Horowitz, M., Hou, H., Liu, Z., Pellegrino, D. “Towards an explanatory and computational theory of scientific discovery.” Journal of Informetrics, 3 (3), Pages 191-209 (2009).

114.    Thagard, P.  Societies of minds: Science as Distributed Computing.  [Journal (Paginated)] (1993).

115.    Aliseda, A. Logics in Scientific Discovery. Foundations of Science 9, 339–363 (2004). 

116.    M. Guardia, T.M. Seara, M.A. Teixeira, “Generic bifurcations of low codimension of planar Filippov Systems”, Journal of Differential Equations, 250 (4), Pages 1967-2023 2011.

117.    Broucke, M.E., Pugh, C.C., Simić, S.N., “Structural stability of piecewise smooth systems.” Comput. Appl. Math. 20 (1-2), Pages 51-90 (2003).

118.    Krapivsky, P. L.; Ben-Naim, E. "Multiscaling in Stochastic Fractals". Physics Letters A. 196 (3–4): 168  (1994). 

119.    Vanchurin, V., “The world as a neural network”, Vanchurin 2020 World, 2008.01540 (2020).

16-19, 36-42, 51, 53, 54, 56-68, 71-97

1-4, 7-10, 15, 30, 35-36, 43, 5, 55, 56, 69-72, 114, 115

1, 5, 6, 11-13, 20-34, 43, 44 , 52, 107-113, 116-119

8–10, 16-19, 36-42, 51, 53, 54, 56-68, 71-97, 102-105

98-100

11-14, 116-118

(1 X 1)

(1 X 2)

(2 X 8)

2

16

(3 x 9)

1

27

16

27

2

1